Th1-Like ICOS+ Foxp3+ Treg Cells Preferentially Express CXCR3 and Home to β-Islets during Pre-Diabetes in BDC2.5 NOD Mice

نویسندگان

  • Mara Kornete
  • Edward S. Mason
  • Julien Girouard
  • Erin I. Lafferty
  • Salman Qureshi
  • Ciriaco A. Piccirillo
چکیده

Type 1 diabetes (T1D) occurs through a breakdown of self-tolerance resulting in the autoimmune destruction of the insulin producing β-islets of the pancreas. A numerical and functional waning of CD4+ Foxp3+ regulatory T (Treg) cells, prompted by a pancreatic IL-2 deficiency, accompanies Th1 autoimmunity and T1D progression in non-obese diabetic (NOD) mice. Recently, we identified a dominant subset of intra-islet Treg cells that expresses the ICOS costimulatory receptor and promotes self-tolerance delaying the onset of T1D. ICOS co-stimulation potently enhances IL-2 induced survival and proliferation, and suppressive activity of Treg cells in situ. Here, we propose an ICOS-dependent mechanism of Treg cell homing to the β-islets during pre-diabetes in the NOD model via upregulation of the CXCR3 chemokine receptor. The islet-specific ICOS+ Treg cell subset preferentially expresses CXCR3 in the pancreatic lymph nodes (pLN) in response to Teff cell-mediated pancreatic inflammation, an expression correlating with the onset and magnitude of IFN-γ production by Teff cells in pancreatic sites. We also reveal that intra-pancreatic APC populations and insulin-producing β, but not α nor δ, islet cells secrete the CXCR3 chemokines, CXCL9, 10 and 11, and selectively promote ICOS+ CXCR3+ Treg cell chemotaxis in vitro. Strikingly, islet-derived Treg cells also produce these chemokines suggesting an auto-regulation of homing by this subset. Unlike ICOS- cells, ICOS+ Treg cells adopt a Th1-like Treg phenotype while maintaining their suppressive capacity, characterized by expression of T-bet and CXCR3 and production of IFN-γ in the draining pLNs. Finally, in vivo neutralization of IFN-γ blocked Treg cell CXCR3 upregulation evincing its role in regulating expression of this chemokine receptor by Treg cells. Thus, CXCR3-mediated trafficking of Treg cells could represent a mechanism of homeostatic immunoregulation during diabetogeneesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes.

Foxp3+ regulatory T (Treg) cells are crucial for restraining inflammation in a variety of autoimmune diseases, including type 1 diabetes (T1D). However, the transcriptional and functional phenotypes of Treg cells within the pancreatic lesion remain poorly understood. Here we characterized pancreas-infiltrating Treg cells in the NOD mouse model of T1D and uncovered a substantial enrichment of th...

متن کامل

Abrogation of ICOS/ICOS ligand costimulation in NOD mice results in autoimmune deviation toward the neuromuscular system.

NOD mice spontaneously develop insulin-dependent diabetes around 10-40 wk of age. Numerous immune gene variants contribute to the autoimmune process. However, genes that direct the autoimmune response toward β cells remain ill defined. In this study, we provide evidence that the Icos and Icosl genes contribute to the diabetes process. Protection from diabetes in ICOS(-/-) and ICOSL(-/-) NOD mic...

متن کامل

Expression of Chemokine Receptors on Th1/Th2 CD4+ Lymphocytes in Patients with Multiple Sclerosis

Background: Th1 cells preferentially express CXCR3, CCR5 and CCR6, while CCR3 and CCR4 are predominantly expressed by Th2 cell subsets. Multiple Sclerosis (MS) is a Th1 cell-dependant chronic inflammatory disease of the central nervous system, and immunomudolatory cytokines could alter the chemokine expression pattern of these lymphocyte subsets. Objective: This study was performed to measure c...

متن کامل

Inducible adeno-associated virus-mediated IL-2 gene therapy prevents autoimmune diabetes.

IL-2 and TGF-β1 play key roles in the immunobiology of Foxp3-expressing CD25(+)CD4(+) T cells (Foxp3(+)Treg). Administration of these cytokines offers an appealing approach to manipulate the Foxp3(+)Treg pool and treat T cell-mediated autoimmunity such as type 1 diabetes. However, efficacy of cytokine treatment is dependent on the mode of application, and the potent pleiotropic effects of cytok...

متن کامل

β-Cell–Specific IL-2 Therapy Increases Islet Foxp3+Treg and Suppresses Type 1 Diabetes in NOD Mice

Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015